Pulsed magnetization transfer spin-echo MR imaging.

نویسندگان

  • G B Pike
  • G H Glover
  • B S Hu
  • D R Enzmann
چکیده

Cross relaxation between macromolecular protons and water protons is known to be important in biologic tissue. In magnetic resonance (MR) imaging sequences, selective saturation of the characteristically short T2 macromolecular proton pool can produce contrast called magnetization transfer contrast, based on the cross-relaxation process. Selective saturation can be achieved with continuous wave irradiation several kilohertz off resonance or short, intense 0 degree pulses on resonance. The authors analyze 0 degree binomial pulses for T2 selective saturation, present design guidelines, and demonstrate the use of these pulses in spin-echo imaging sequences in healthy volunteers and patients. Using the phenomenologic Bloch equations modified for two-site exchange, the authors derive the analytic expressions for water proton relaxation under periodic pulsed saturation of the macromolecular protons. This relaxation is shown to be monoexponential, with a rate constant dependent on the saturation pulse repetition rate and the individual and cross-relaxation rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MR imaging-related heating of deep brain stimulation electrodes: in vitro study.

BACKGROUND AND PURPOSE Recent work has shown a potential for excessive heating of deep brain stimulation electrodes during MR imaging. This in vitro study investigates the relationship between electrode heating and the specific absorption rate (SAR) of several MR images. METHODS In vitro testing was performed by using a 1.5-T MR imaging system and a head transmit-receive coil, with bilateral ...

متن کامل

Magnetization transfer imaging in the detection of injury associated with mild head trauma.

BACKGROUND AND PURPOSE Most traumatic brain injuries are classified as mild, yet in many instances cognitive deficits result. The purpose of this study was to investigate possible relationships between quantitative magnetization transfer imaging (MTI) and neurocognitive findings in a cohort of patients with mild head trauma but negative findings on conventional MR images. METHODS We examined ...

متن کامل

T1-weighted three-dimensional magnetization transfer MR of the brain: improved lesion contrast enhancement.

PURPOSE We developed and evaluated clinically T1-weighted three-dimensional gradient-echo magnetization transfer (MT) sequences for contrast-enhanced MR imaging of the brain. METHODS A short-repetition-time, radio frequency-spoiled, 3-D sequence was developed with a 10-millisecond MT pulse at high MT power and narrow MT pulse-frequency offset, and the enhancing lesion-to-normal white matter b...

متن کامل

MR enhancement of brain lesions: increased contrast dose compared with magnetization transfer.

PURPOSE To compare image contrast and lesion conspicuity of enhancing intracranial lesions obtained with T1-weighted and magnetization transfer T1-weighted spin-echo sequences after administration of standard (0.1 mmol/kg body weight) and triple doses of gadobutrol. METHODS Twenty-four patients with a total of 34 enhancing intracranial lesions were studied with T1-weighted and magnetization t...

متن کامل

Cranial tissues: appearance at gadolinium-enhanced and nonenhanced MR imaging with magnetization transfer contrast.

PURPOSE To determine the relative contrast of normal cranial tissues at magnetization transfer (MT) spin-echo magnetic resonance (MR) imaging. MATERIALS AND METHODS MR imaging at 1.5 T was performed with conventional spin-echo techniques without and with off-resonance MT saturation pulses. The signal intensities of normal cranial tissues were measured in 10 healthy volunteers on spin-density-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance imaging : JMRI

دوره 3 3  شماره 

صفحات  -

تاریخ انتشار 1993